Depletion of kidney CD11c+ F4/80+ cells impairs the recovery process in ischaemia/reperfusion-induced acute kidney injury.
نویسندگان
چکیده
BACKGROUND Recent studies provided evidence of the potential role of CD11c(+) F4/80(+) dendritic subset in mediating injury and repair. The purpose of this study was to examine the role of kidney CD11c(+) F4/80(+) dendritic subset in the recovery phase of ischaemia/reperfusion injury (IRI). METHODS Following ischaemia/reperfusion (I/R), liposome clodronate or phosphate buffered saline (PBS) was administered, and on day 7 biochemical and histologic kidney damage was assessed. Activation and depletion of CD11c(+) F4/80(+) dendritic subset were confirmed by flow cytometry. Isolation of kidney CD11c(+) cells on days 1 and 7 with in vitro culture for measuring cytokines was performed to define functional characteristics of these cells, and adoptive transfer of CD11c(+) cells was also done. RESULTS Following kidney IRI, the percentage of CD11c(+) F4/80(+) kidney dendritic cell subset that co-expresses maturation marker increased. Liposome clodronate injection after I/R resulted in preferential depletion of CD11c(+) F4/80(+) kidney dendritic subset, and depletion of these cells was associated with persistent kidney injury, more apoptosis, inflammation and impaired tubular cell proliferation. CD11c(+) F4/80(+) cell depletion was also associated with higher tissue levels of pro-inflammatory cytokines and lower level of IL-10, indicating the persistence of inflammatory milieu. Isolated kidney CD11c(+) cells on day 7 showed different phenotype with increased production of IL-10 compared with those on day 1. Adoptive transfer of CD11c(+) cells partially reversed impaired tissue recovery. CONCLUSION Our results suggest that kidney CD11c(+) F4/80(+) dendritic subset might contribute to the recovery process by dynamic phenotypic change from pro-inflammatory to anti-inflammatory with modulation of immune response.
منابع مشابه
CD4+ CD25+ regulatory T cells partially mediate the beneficial effects of FTY720, a sphingosine-1-phosphate analogue, during ischaemia/reperfusion-induced acute kidney injury.
BACKGROUND The synthetic sphingosine-1-phosphate (S1P) analogue, FTY720, attenuates ischaemia/reperfusion (I/R) injury by inducing peripheral lymphopaenia. Recent studies suggest that FTY720 may also exert protective effects by modulating dendritic cell (DC) function or directly affecting regulatory T cells (Tregs). The purpose of the present study was to examine whether the beneficial effect o...
متن کاملThe effect of adipose-derived mesenchymal stem cells on renal function and histopathology in a rat model of ischemia-reperfusion induced acute kidney injury
Objective(s): It has been shown that adipose-derived mesenchymal stem cells (AD-MSC) have protective effects in acute kidney injury (AKI). This study was conducted to assess the therapeutic effects of AD-MSC in rats subjected to acute kidney injury by 45 min of renal ischemia followed by 48 hr of reperfusion (I/R). Materials and Methods:...
متن کاملProtective role of remote ischemic per-conditioning in acute renal injury induced by ischemia reperfusion via TLR-4 and TNF-α signaling pathway in rats
sIntroduction: Acute kidney injury (AKI) induced by ischemia-reperfusion (I / R) of the kidney as an inflammatory process in which multiple inflammatory factors are involved. Recently, one of the modalities of inflammation in AKI is Remote Ischemic Per-Conditioning (RIPerC). Materials and Methods: In this study, bilateral renal artery and vein occlusion were done for 45 minute and reperfusion a...
متن کاملEpithelial cell TGFβ signaling induces acute tubular injury and interstitial inflammation.
TGFβ signaling plays a central role in the development of acute and chronic kidney diseases. Previous in vivo studies involved systemic alteration of TGFβ signaling, however, limiting conclusions about the direct role of TGFβ in tubular cell injury. Here, we generated a double transgenic mouse that inducibly expresses a ligand-independent constitutively active TGFβ receptor type 1 (TβR1) kinase...
متن کاملIn vivo effects of allogeneic mesenchymal stem cells in a rat model of acute ischemic kidney injury
Objective(s): Renal ischemia-reperfusion injury (IRI) as a severe condition of acute kidney injury (AKI) is the most common clinical problem with high mortality rates of 35-60% deaths in hospital. Mesenchymal stem cells (MSC) due to unique regenerative characteristics are ideal candidates for the treatment of the ischemic injuries. This work is focused on the administration of MSC to IRI-induce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association
دوره 25 9 شماره
صفحات -
تاریخ انتشار 2010